Skip to contents

Extracts the tuning parameter lambda minimizing multiple information criteria from a fitted islasso.path object. Supported criteria include AIC, BIC, AICc, eBIC, GCV, and GIC.

Usage

GoF.islasso.path(object, plot = TRUE, ...)

Arguments

object

A fitted model of class "islasso.path".

plot

Logical. If TRUE (default), displays plots for each criterion over the lambda path.

...

Additional arguments passed to lower-level plotting or diagnostic methods.

Value

A list with components:

gof

Matrix of goodness-of-fit values across lambda values.

minimum

Index positions of the minimum for each criterion.

lambda.min

Optimal lambda values that minimize each criterion.

Details

This function identifies the optimal regularization parameter lambda by minimizing various information-based selection criteria. Degrees of freedom are computed as the trace of the hat matrix, which may be fractional under induced smoothing. This provides a robust alternative to cross-validation, especially in high-dimensional settings.

Author

Gianluca Sottile gianluca.sottile@unipa.it

Examples

set.seed(1)
n <- 100; p <- 30
beta <- c(runif(10, -2, 2), rep(0, p - 10))
sim <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
fit <- islasso.path(y ~ ., data = sim$data, family = gaussian())
GoF.islasso.path(fit)

#> $gof
#>             AIC      BIC      AICc     eBIC      GCV      GIC
#>   [1,] 344.8518 425.5860 3260.2150 532.0052 593.9714 445.3931
#>   [2,] 344.8500 425.5817 3259.9984 531.9977 593.9552 445.3882
#>   [3,] 344.8479 425.5769 3259.7597 531.9894 593.9374 445.3828
#>   [4,] 344.8456 425.5716 3259.4928 531.9801 593.9175 445.3767
#>   [5,] 344.8431 425.5657 3259.1978 531.9698 593.8955 445.3700
#>   [6,] 344.8403 425.5593 3258.8742 531.9585 593.8713 445.3627
#>   [7,] 344.8372 425.5522 3258.5191 531.9461 593.8449 445.3546
#>   [8,] 344.8339 425.5445 3258.1294 531.9326 593.8158 445.3458
#>   [9,] 344.8303 425.5360 3257.7018 531.9177 593.7839 445.3361
#>  [10,] 344.8262 425.5266 3257.2305 531.9013 593.7488 445.3254
#>  [11,] 344.8219 425.5164 3256.7162 531.8834 593.7105 445.3138
#>  [12,] 344.8170 425.5052 3256.1514 531.8637 593.6685 445.3010
#>  [13,] 344.8118 425.4929 3255.5313 531.8422 593.6224 445.2870
#>  [14,] 344.8060 425.4794 3254.8478 531.8184 593.5715 445.2715
#>  [15,] 344.7997 425.4646 3254.1018 531.7925 593.5161 445.2547
#>  [16,] 344.7928 425.4484 3253.2825 531.7641 593.4552 445.2362
#>  [17,] 344.7852 425.4306 3252.3790 531.7327 593.3882 445.2159
#>  [18,] 344.7770 425.4111 3251.3929 531.6985 593.3151 445.1937
#>  [19,] 344.7679 425.3897 3250.3052 531.6608 593.2345 445.1692
#>  [20,] 344.7580 425.3664 3249.1176 531.6197 593.1466 445.1426
#>  [21,] 344.7472 425.3407 3247.8073 531.5744 593.0497 445.1132
#>  [22,] 344.7354 425.3126 3246.3768 531.5249 592.9440 445.0812
#>  [23,] 344.7225 425.2818 3244.7982 531.4704 592.8276 445.0459
#>  [24,] 344.7084 425.2480 3243.0676 531.4107 592.7001 445.0074
#>  [25,] 344.6932 425.2112 3241.1769 531.3455 592.5610 444.9653
#>  [26,] 344.6764 425.1707 3239.0896 531.2737 592.4077 444.9190
#>  [27,] 344.6582 425.1264 3236.8007 531.1950 592.2399 444.8683
#>  [28,] 344.6384 425.0780 3234.2894 531.1089 592.0562 444.8128
#>  [29,] 344.6169 425.0250 3231.5332 531.0145 591.8549 444.7521
#>  [30,] 344.5935 424.9671 3228.5078 530.9110 591.6346 444.6857
#>  [31,] 344.5682 424.9038 3225.1866 530.7977 591.3933 444.6131
#>  [32,] 344.5407 424.8346 3221.5404 530.6736 591.1291 444.5337
#>  [33,] 344.5108 424.7588 3217.5204 530.5370 590.8388 444.4466
#>  [34,] 344.4788 424.6764 3213.1330 530.3884 590.5230 444.3519
#>  [35,] 344.4441 424.5861 3208.2906 530.2248 590.1757 444.2480
#>  [36,] 344.4068 424.4878 3202.9812 530.0460 589.7964 444.1346
#>  [37,] 344.3667 424.3807 3197.1548 529.8505 589.3821 444.0111
#>  [38,] 344.3238 424.2641 3190.7587 529.6367 588.9294 443.8764
#>  [39,] 344.2781 424.1372 3183.7359 529.4029 588.4349 443.7296
#>  [40,] 344.2293 423.9991 3176.0246 529.1472 587.8949 443.5696
#>  [41,] 344.1768 423.8480 3167.5202 528.8661 587.3021 443.3943
#>  [42,] 342.4509 419.8368 2974.8888 521.8426 572.7934 438.8225
#>  [43,] 342.3552 419.5734 2961.1482 521.3581 571.8125 438.5179
#>  [44,] 342.2654 419.3150 2947.3850 520.8773 570.8417 438.2181
#>  [45,] 342.1657 419.0231 2931.7616 520.3320 569.7437 437.8790
#>  [46,] 342.0760 418.7417 2916.2622 519.7981 568.6718 437.5506
#>  [47,] 341.9899 418.4540 2900.0324 519.2446 567.5643 437.2135
#>  [48,] 341.9028 418.1464 2882.3658 518.6463 566.3710 436.8517
#>  [49,] 341.8074 417.7985 2862.2442 517.9656 565.0182 436.4419
#>  [50,] 341.7543 417.5234 2844.6765 517.3979 563.8946 436.1124
#>  [51,] 341.7070 417.2341 2825.6360 516.7897 562.6950 435.7637
#>  [52,] 341.6638 416.9229 2804.6713 516.1253 561.3897 435.3868
#>  [53,] 340.0503 412.9502 2624.0547 509.0427 547.7409 430.8353
#>  [54,] 340.0137 412.5674 2598.5204 508.2035 546.1651 430.3675
#>  [55,] 339.9996 412.1796 2571.2088 507.3232 544.5221 429.8880
#>  [56,] 340.0119 411.7972 2542.6290 506.4206 542.8478 429.4088
#>  [57,] 338.5380 407.9071 2371.4958 499.3456 529.9186 424.9260
#>  [58,] 338.5976 407.4700 2337.7943 498.2536 527.9897 424.3669
#>  [59,] 338.7092 407.0403 2301.5595 497.1105 525.9887 423.8045
#>  [60,] 338.8837 406.6313 2263.0423 495.9324 523.9461 423.2524
#>  [61,] 339.1278 406.2397 2221.7144 494.7029 521.8358 422.7048
#>  [62,] 339.4479 405.8687 2177.5184 493.4209 519.6588 422.1642
#>  [63,] 338.5773 402.5444 2024.2216 486.8622 508.5448 418.2379
#>  [64,] 339.1569 402.3694 1979.6532 485.6926 506.6829 417.8778
#>  [65,] 339.8634 402.2255 1930.4316 484.4277 504.6928 417.5252
#>  [66,] 339.5143 399.3822 1789.3538 478.2967 494.8630 414.0700
#>  [67,] 340.5223 399.4146 1737.5826 477.0432 493.0190 413.8631
#>  [68,] 339.6438 394.6916 1540.6641 467.2525 478.0742 408.1969
#>  [69,] 341.1542 395.1469 1491.6152 466.3171 476.8943 408.3933
#>  [70,] 342.9131 395.7245 1438.3696 465.3376 475.6789 408.6811
#>  [71,] 344.9600 396.5071 1383.3962 464.4536 474.6302 409.1535
#>  [72,] 347.3140 397.5048 1326.6648 463.6635 473.7376 409.8185
#>  [73,] 349.9967 398.7450 1268.8295 463.0022 473.0414 410.7048
#>  [74,] 353.0119 400.2369 1210.4856 462.4862 472.5517 411.8230
#>  [75,] 354.3793 397.4867 1058.6479 454.3084 461.3238 408.0625
#>  [76,] 356.8227 396.9392  960.9334 449.8185 455.5101 406.7813
#>  [77,] 360.3045 398.2637  897.7395 448.2993 453.7622 407.5765
#>  [78,] 364.7950 401.3166  860.3133 449.4573 455.5236 410.2767
#>  [79,] 369.7306 404.7077  822.4028 450.8126 457.4733 413.2889
#>  [80,] 375.1416 408.5393  786.2950 452.5622 459.8474 416.7330
#>  [81,] 381.0222 412.8062  752.1034 454.7020 462.6173 420.6040
#>  [82,] 387.2646 417.2803  717.1030 456.8453 465.2548 424.6443
#>  [83,] 394.0636 422.4138  687.5502 459.7835 468.7744 429.3692
#>  [84,] 401.4904 428.2976  663.4081 463.6332 473.3049 434.8743
#>  [85,] 409.5076 434.8453  643.2134 468.2439 478.6307 441.0615
#>  [86,] 417.9681 441.7280  623.3543 473.0470 483.9832 447.5572
#>  [87,] 426.8405 448.9992  605.5309 478.2076 489.5697 454.4356
#>  [88,] 436.0899 456.7146  591.0983 483.9010 495.6256 461.7746
#>  [89,] 445.6813 464.9395  581.1248 490.3245 502.4339 469.6642
#>  [90,] 455.6308 473.8274  576.8541 497.8130 510.4830 478.2917
#>  [91,] 465.9895 483.1907  574.6475 505.8643 519.0660 487.4108
#>  [92,] 476.6809 493.0720  575.6531 514.6777 528.5102 497.0933
#>  [93,] 487.5438 503.0492  576.4780 523.4877 537.7465 506.8533
#>  [94,] 498.3487 512.6903  574.9529 531.5945 545.7749 516.2088
#>  [95,] 508.8468 521.7118  571.1986 538.6697 552.1576 524.8680
#>  [96,] 518.8586 529.9566  566.1610 544.5852 556.7642 532.6793
#>  [97,] 527.9878 537.2451  561.8927 549.4477 559.9704 539.5163
#>  [98,] 536.2179 543.6657  559.1670 553.4829 562.1846 545.4929
#>  [99,] 543.5435 549.1808  557.6835 556.6116 563.3318 550.5639
#> [100,] 549.1749 553.2876  557.5319 558.7086 563.6739 554.2965
#> 
#> $minimum
#>  AIC  BIC AICc eBIC  GCV  GIC 
#>   57   68  100   77   77   76 
#> 
#> $lambda.min
#>        AIC        BIC       AICc       eBIC        GCV        GIC 
#>   3.080924   8.563382 167.562870  19.764636  19.764636  18.010610 
#> 
#> $plot

#>