Skip to contents

This dataset originates from a study examining the correlation between prostate-specific antigen levels and various clinical measures in men scheduled for radical prostatectomy. It contains 97 rows and 9 variables.

Format

A data frame with 97 observations and 9 variables:

lcavol

Log of cancer volume

lweight

Log of prostate weight

age

Age of the patient

lbph

Log of benign prostatic hyperplasia amount

svi

Seminal vesicle invasion (binary)

lcp

Log of capsular penetration

gleason

Gleason score

pgg45

Percentage of Gleason scores 4 or 5

lpsa

Log of prostate-specific antigen

Source

Stamey, T.A., et al. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients. Journal of Urology, 141(5), 1076-1083.

References

Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine, E.A., and Yang, N. (1989). Journal of Urology, 141(5), 1076-1083.

Examples

data(Prostate)
summary(Prostate)
#>      lcavol           lweight           age             lbph        
#>  Min.   :-1.3471   Min.   :2.375   Min.   :41.00   Min.   :-1.3863  
#>  1st Qu.: 0.5128   1st Qu.:3.376   1st Qu.:60.00   1st Qu.:-1.3863  
#>  Median : 1.4469   Median :3.623   Median :65.00   Median : 0.3001  
#>  Mean   : 1.3500   Mean   :3.653   Mean   :63.87   Mean   : 0.1004  
#>  3rd Qu.: 2.1270   3rd Qu.:3.878   3rd Qu.:68.00   3rd Qu.: 1.5581  
#>  Max.   : 3.8210   Max.   :6.108   Max.   :79.00   Max.   : 2.3263  
#>       svi              lcp             gleason          pgg45       
#>  Min.   :0.0000   Min.   :-1.3863   Min.   :6.000   Min.   :  0.00  
#>  1st Qu.:0.0000   1st Qu.:-1.3863   1st Qu.:6.000   1st Qu.:  0.00  
#>  Median :0.0000   Median :-0.7985   Median :7.000   Median : 15.00  
#>  Mean   :0.2165   Mean   :-0.1794   Mean   :6.753   Mean   : 24.38  
#>  3rd Qu.:0.0000   3rd Qu.: 1.1787   3rd Qu.:7.000   3rd Qu.: 40.00  
#>  Max.   :1.0000   Max.   : 2.9042   Max.   :9.000   Max.   :100.00  
#>       lpsa        
#>  Min.   :-0.4308  
#>  1st Qu.: 1.7317  
#>  Median : 2.5915  
#>  Mean   : 2.4784  
#>  3rd Qu.: 3.0564  
#>  Max.   : 5.5829  
cor(Prostate$lpsa, Prostate$lcavol)
#> [1] 0.7344603
if (FALSE) { # \dontrun{
  fit <- islasso(lpsa ~ ., data = Prostate, family = gaussian())
  summary(fit, pval = 0.05)
  lambda.aic <- aic.islasso(fit, method = "AIC")
  fit.aic <- update(fit, lambda = lambda.aic)
  summary(fit.aic, pval = 0.05)
} # }