
Prostate Cancer Data
Prostate.RdThis dataset originates from a study examining the correlation between prostate-specific antigen levels and various clinical measures in men scheduled for radical prostatectomy. It contains 97 rows and 9 variables.
Format
A data frame with 97 observations and 9 variables:
- lcavol
Log of cancer volume
- lweight
Log of prostate weight
- age
Age of the patient
- lbph
Log of benign prostatic hyperplasia amount
- svi
Seminal vesicle invasion (binary)
- lcp
Log of capsular penetration
- gleason
Gleason score
- pgg45
Percentage of Gleason scores 4 or 5
- lpsa
Log of prostate-specific antigen
Source
Stamey, T.A., et al. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients. Journal of Urology, 141(5), 1076-1083.
References
Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine, E.A., and Yang, N. (1989). Journal of Urology, 141(5), 1076-1083.
Examples
data(Prostate)
summary(Prostate)
#> lcavol lweight age lbph
#> Min. :-1.3471 Min. :2.375 Min. :41.00 Min. :-1.3863
#> 1st Qu.: 0.5128 1st Qu.:3.376 1st Qu.:60.00 1st Qu.:-1.3863
#> Median : 1.4469 Median :3.623 Median :65.00 Median : 0.3001
#> Mean : 1.3500 Mean :3.653 Mean :63.87 Mean : 0.1004
#> 3rd Qu.: 2.1270 3rd Qu.:3.878 3rd Qu.:68.00 3rd Qu.: 1.5581
#> Max. : 3.8210 Max. :6.108 Max. :79.00 Max. : 2.3263
#> svi lcp gleason pgg45
#> Min. :0.0000 Min. :-1.3863 Min. :6.000 Min. : 0.00
#> 1st Qu.:0.0000 1st Qu.:-1.3863 1st Qu.:6.000 1st Qu.: 0.00
#> Median :0.0000 Median :-0.7985 Median :7.000 Median : 15.00
#> Mean :0.2165 Mean :-0.1794 Mean :6.753 Mean : 24.38
#> 3rd Qu.:0.0000 3rd Qu.: 1.1787 3rd Qu.:7.000 3rd Qu.: 40.00
#> Max. :1.0000 Max. : 2.9042 Max. :9.000 Max. :100.00
#> lpsa
#> Min. :-0.4308
#> 1st Qu.: 1.7317
#> Median : 2.5915
#> Mean : 2.4784
#> 3rd Qu.: 3.0564
#> Max. : 5.5829
cor(Prostate$lpsa, Prostate$lcavol)
#> [1] 0.7344603
if (FALSE) { # \dontrun{
fit <- islasso(lpsa ~ ., data = Prostate, family = gaussian())
summary(fit, pval = 0.05)
lambda.aic <- aic.islasso(fit, method = "AIC")
fit.aic <- update(fit, lambda = lambda.aic)
summary(fit.aic, pval = 0.05)
} # }