
Blood and other measurements in diabetics
diabetes.Rd
The diabetes
data frame contains 442 observations used in the Efron et al. "Least Angle Regression" paper.
Format
A data frame with 442 rows and 3 columns:
- x
Matrix with 10 numeric columns (standardized)
- y
Numeric response vector
- x2
Matrix with 64 columns including interactions
Details
The x
matrix has been standardized to have unit L2 norm and zero mean in each column.
The x2
matrix extends x
by adding selected interaction terms.
References
Efron, Hastie, Johnstone and Tibshirani (2003). "Least Angle Regression" (with discussion), Annals of Statistics.
Examples
data(diabetes)
str(diabetes)
#> 'data.frame': 442 obs. of 3 variables:
#> $ x : 'AsIs' num [1:442, 1:10] 0.03808 -0.00188 0.0853 -0.08906 0.00538 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : NULL
#> .. ..$ : chr [1:10] "age" "sex" "bmi" "map" ...
#> $ y : num 151 75 141 206 135 97 138 63 110 310 ...
#> $ x2: 'AsIs' num [1:442, 1:64] 0.03808 -0.00188 0.0853 -0.08906 0.00538 ...
#> ..- attr(*, ".Names")= chr [1:28288] "age" "age" "age" "age" ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:442] "1" "2" "3" "4" ...
#> .. ..$ : chr [1:64] "age" "sex" "bmi" "map" ...
summary(diabetes$y)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 25.0 87.0 140.5 152.1 211.5 346.0
if (FALSE) { # \dontrun{
fit <- islasso(y ~ ., data = data.frame(y = diabetes$y, diabetes$x2),
family = gaussian())
summary(fit, pval = 0.05)
lambda.aic <- aic.islasso(fit, interval = c(1, 100))
fit.aic <- update(fit, lambda = lambda.aic)
summary(fit.aic, pval = 0.05)
} # }