
Prediction Method for islasso Objects
predict.islasso.Rd
Computes predictions from a fitted islasso
model object. Multiple output types supported, including response scale, linear predictor, and coefficient values.
Arguments
- object
A fitted model of class
"islasso"
.- newdata
Optional data frame containing predictors for prediction. If omitted, the fitted model matrix is used.
- type
Character. Specifies the prediction scale:
"link"
(default): linear predictor scale;"response"
: original response scale;"coefficients"
: estimated coefficients;"class"
: predicted class (only forbinomial()
family);"terms"
: contribution of each term to the linear predictor.
- se.fit
Logical. Whether to compute standard errors/confidence intervals.
- ci
Optional. Precomputed matrix of confidence intervals (2 columns).
- type.ci
Type of interval. Only
"wald"
is implemented.- level
Confidence level for intervals. Default is
0.95
.- terms
If
type = "terms"
, optionally specify which terms to extract.- na.action
Function to handle missing values in
newdata
. Default:na.pass
.- ...
Additional arguments passed to downstream methods.
Author
Gianluca Sottile gianluca.sottile@unipa.it
Examples
set.seed(1)
n <- 100; p <- 100
beta <- c(runif(20, -3, 3), rep(0, p - 20))
sim <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
fit <- islasso(y ~ ., data = sim$data, family = gaussian(), lambda = 2)
predict(fit, type = "response")
#> 1 2 3 4 5 6
#> 5.21145237 -1.43186355 -1.87707634 3.38862598 -1.92102645 2.98415369
#> 7 8 9 10 11 12
#> -9.43985904 4.15355250 -2.66779789 -4.14845909 3.46641282 -4.10876731
#> 13 14 15 16 17 18
#> 0.90610289 -2.76134098 1.89852882 -0.60890376 -6.55871515 0.06352742
#> 19 20 21 22 23 24
#> -2.62533271 0.42070839 -4.82272696 -4.67076935 10.48877879 14.86453464
#> 25 26 27 28 29 30
#> -4.48649098 -6.37381434 4.09537272 13.60055424 2.07156492 7.50878799
#> 31 32 33 34 35 36
#> -6.73281383 -0.91646275 9.10929220 11.18502534 -4.52986378 -7.37417357
#> 37 38 39 40 41 42
#> 23.33603867 4.78241357 -1.57391485 5.40950944 -0.46416742 -8.41419768
#> 43 44 45 46 47 48
#> 6.61032726 -2.31682147 -7.40341429 -10.68456568 -0.01351213 -12.36236266
#> 49 50 51 52 53 54
#> -0.89347286 9.38899357 3.35335057 -0.98732376 -5.27471442 -5.73730247
#> 55 56 57 58 59 60
#> 8.16581897 -5.45944955 -12.85556246 10.86746694 -11.87252793 11.34253371
#> 61 62 63 64 65 66
#> -3.67302524 4.08943614 -8.00715886 -7.92820503 6.25491158 13.88284885
#> 67 68 69 70 71 72
#> -6.17176098 14.24448381 -6.76303137 3.31426261 -15.90302166 8.00218489
#> 73 74 75 76 77 78
#> -2.24816294 -4.95830887 5.03041165 -0.25738149 6.89625712 4.03817956
#> 79 80 81 82 83 84
#> -12.83266376 -0.93735110 -9.93779514 -0.36243304 -0.11087383 10.86588406
#> 85 86 87 88 89 90
#> -10.84340285 -3.02213088 -12.36447903 13.77524184 -2.55117297 -4.87329978
#> 91 92 93 94 95 96
#> 2.21847849 -6.34566460 -2.11714321 -3.08677838 -0.06908000 9.07232136
#> 97 98 99 100
#> -9.20100578 6.35833233 13.40067379 -0.31352736