
Coefficient Profile and Diagnostic Plots for islasso.path
plot.islasso.path.Rd
Generates plots of coefficient profiles, standard errors, gradients, weights, or goodness-of-fit criteria
from a fitted islasso.path
model.
Arguments
- x
An object of class
"islasso.path"
, typically created viaislasso.path
.- yvar
Character. Specifies what to display on the y-axis. Choices are:
"coefficients"
- coefficient paths overlog(lambda)
,"se"
- standard errors overlog(lambda)
,"gradient"
- gradient values overlog(lambda)
,"weight"
- mixture weights used in smoothing,"gof"
- goodness-of-fit values.
- gof
Character. Criterion used for highlighting active variables. Choices:
"none"
,"AIC"
,"BIC"
,"AICc"
,"eBIC"
,"GCV"
,"GIC"
.- label
Logical. Whether to annotate curves with variable names.
- legend
Logical. Whether to display a plot legend.
- ...
Additional graphical parameters, e.g.
main
,xlab
,ylab
,xlim
,ylim
,lty
,col
,lwd
,cex.axis
,cex.lab
,cex.main
,gof_lty
,gof_col
,gof_lwd
.
Details
This function visualizes the behavior of the solution path across a sequence of lambda values, helping diagnose coefficient shrinkage, influence of penalty, and variable selection stability.
Author
Gianluca Sottile gianluca.sottile@unipa.it
Examples
if (FALSE) { # \dontrun{
n <- 100; p <- 30
beta <- c(runif(10, -2, 2), rep(0, p - 10))
sim <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
fit <- islasso.path(y ~ ., data = sim$data, family = gaussian())
plot(fit, yvar = "coefficients", gof = "AICc", label = TRUE)
plot(fit, yvar = "se", gof = "AICc")
plot(fit, yvar = "gradient", gof = "AICc")
plot(fit, yvar = "gof", gof = "AICc")
} # }